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A B S T R A C T

Current state-of-the-art methods for whole and subfield hippocampus segmentation use pre-segmented templates,
also known as atlases, in the pre-processing stages. Typically, the input image is registered to the template, which
provides prior information for the segmentation process. Using a single standard atlas increases the difficulty in
dealing with individuals who have a brain anatomy that is morphologically different from the atlas, especially in
older brains. To increase the segmentation precision in these cases, without any manual intervention, multiple
atlases can be used. However, registration to many templates leads to a high computational cost. Researchers have
proposed to use an atlas pre-selection technique based on meta-information followed by the selection of an atlas
based on image similarity. Unfortunately, this method also presents a high computational cost due to the image-
similarity process. Thus, it is desirable to pre-select a smaller number of atlases as long as this does not impact on
the segmentation quality. To pick out an atlas that provides the best registration, we evaluate the use of three
meta-information parameters (medical condition, age range, and gender) to choose the atlas. In this work, 24
atlases were defined and each is based on the combination of the three meta-information parameters. These
atlases were used to segment 352 vol from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.
Hippocampus segmentation with each of these atlases was evaluated and compared to reference segmentations of
the hippocampus, which are available from ADNI. The use of atlas selection by meta-information led to a sig-
nificant gain in the Dice similarity coefficient, which reached 0.68� 0.11, compared to 0.62� 0.12 when using
only the standard MNI152 atlas. Statistical analysis showed that the three meta-information parameters provided
a significant improvement in the segmentation accuracy.
1. Introduction

The analysis of morphometric characteristics of the hippocampus or
its subfields is an important process in the diagnosis of many neurological
and neuropsychological diseases, including temporal lobe epilepsy [1],
Alzheimer's disease (AD) and mild cognitive impairment (MCI) [2],
schizophrenia [3], major depression [4], bipolar disorder [5], and
post-traumatic stress syndrome [6], among others [7].

Manually segmenting the hippocampus and calculating its volume are
laborious tasks and are prone to subjective interpretation by health
professionals. Automated methods that can reduce the subjectivity and
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increase the segmentation accuracy are highly desirable. However,
automatic segmentation of the hippocampus in magnetic resonance im-
ages (MRI) presents some challenges. In a T1-weighted image, the pixel
(or voxel) intensities of the hippocampus are similar to the intensities
from other nearby brain structures, such as the amygdala, caudate nu-
cleus, and thalamus [8]. Also, well-defined borders of the hippocampus
with its neighboring structures are not easily identifiable, partial volume
effects make pixel classification at the border more difficult, and the
non-uniformity of intensities hinders the process of segmenting the
hippocampus [9].
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from his or her previous knowledge, such as the position of the hippo-
campus in the brain, the relative positions of neighboring structures, and
knowledge about the usual shape of the hippocampus, which allows the
professional to overcome those limitations. In automated methods, these
high-level features cannot be obtained directly from pixel intensities.
However, these features can be incorporated by other means, such as by
the usage of atlases [10]. An atlas is an image in which there is reference
segmentation for structures of interest, obtained through manual or
automatic methods.

The simplest technique of atlas usage for hippocampus segmentation
consists of registering a single atlas to the target image. With the defor-
mation map acquired through this registration, it is possible to warp the
existing segmentation in the atlas to the target image to obtain the final
segmentation. The quality of the segmentation achieved through the
single-atlas based method is strongly dependent on the choice of atlas
and the registration accuracy. To obtain acceptable results, the method
must use an atlas that has been created from individuals with anatomies
similar to that of the individual in the target image, since the available
registration techniques cannot align individuals with large anatomical
differences with the required precision [11].

As a way to overcome this problem, many current methods usemulti-
atlas based techniques. Several different techniques have been used for
applying multiple atlases in hippocampus segmentation. One of the most
common ways is to individually segment the target with all the available
atlases. Then, the creation of the final segmentation is done through label
fusion techniques [12]. Many methods have been presented within the
last years in this field of research [10,13–27].1 However, despite showing
good accuracy, this kind of segmentation method based on multiple
atlases has a high computational cost, since the target image must be
registered separately with each atlas used. Consequently, it is desirable to
use a smaller number of atlases as long as this does not impact on the
segmentation quality.

For atlas selection, the most common methods are based on image
similarity and patient meta-information. Selection by image similarity
gives excellent results but still has a high computational cost. On the
other hand, selection by meta-information has the advantage of having a
significantly low computational cost but may not lead to the selection of
an ideal atlas [28].

Thus, the usage of mixed approaches in which a pre-selection is made
throughmeta-information and a selection by similarity is performed later
for a reduced group of atlases may combine the best of each technique:
the low computational cost of the meta-information selection and the
effectiveness of the selection by image similarity techniques. Aljabar
et al. [29], for example, selected a subset of a database with 275 atlases
based on global characteristics of the image and meta-information, such
as the age and sex of the patient. Local similarity metrics for the structure
of interest can also be used [28,30–35]. Methods for segmenting other
structures have also used similar approaches to select the ideal smallest
number of atlases [36–38].

Taking the meta-information selection approach in isolation, the
minimal number of atlases needed is equal to the product of the total
number of possible values of each parameter used in the selection, that is,
an atlas for each combination of the characteristics used. Therefore,
knowing the relevance of selection parameters is important, since non-
relevant parameters may be excluded from the selection process, thus
reducing the total number of atlases needed.

In this context, the presented paper evaluates the relevance of three
meta-information parameters in the selection of atlases for hippocampus
segmentation in a dataset from the Alzheimer's Disease Neuroimaging
Initiative (ADNI). For this purpose, we performed a large-scale experi-
ment, in which 352 vol were segmented with 25 different atlases, (24
specific atlases plus the MNI152 atlas), representing different
1 For a more complete reference, a review of hippocampal segmentation
methods is presented in Dill et al. [52].
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characteristic combinations of the following parameters: gender, age
group, and clinical situation. Each target image and atlas pair was eval-
uated through the use of the DSC (Dice Similarity Coefficient) precision
index [39] so that the influence of each of the three parameters on the
result of the hippocampus segmentation could be evaluated.

2. Materials and methods

The experiment was conducted on T1-weighted MRI data obtained
from the ADNI database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public–private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer's disease (AD).

The following sections describe the segmentation method used
(Section 2.1), atlases (2.2), test data (2.3), evaluation procedure (2.4),
and execution details (2.5).
2.1. Segmentation method

Fig. 1 shows a schematic overview of the applied segmentation
method. Initially, the atlas selection is performed through meta-
information matching. Using the parameters gender, clinical situation,
and age group, an atlas that corresponds exactly to these three charac-
teristics of the target volume is chosen as a template.

Details about the atlases used in this experiment are presented in
Section 2.2. The method assumes the existence of a set generated in such
a way that there is one atlas for each combination of possible values of
parameters used (sex, age, and clinical condition). The values used for
each selection parameter are presented in Table 1. Thus, to cover the full
range of possible combinations of these values, 24 atlases are needed.

The target volume and the atlas are converted to the same coordinate
space through a linear registration technique [40] using the MNI152 as
the template [41]. This procedure is found to be necessary since it nor-
malizes the images for future steps of skull stripping and allows the usage
of non-linear registration techniques, which are designed for the fine
alignment of internal structures and cannot handle large shifts.

After the linear registration, a skull stripping technique is applied on
the target volume [42,43]. The BET (Brain Extraction Tool), which is part
of the FSL toolkit (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) [44], is used in
this process. This execution step removes the skull from the image vol-
ume, keeping only the brain mass, thus increasing the non-linear regis-
tration precision which will be applied later. This also reduces the
computational cost of the process, since a smaller number of pixels are
used in the computation.

With the brain mass segmented, the non-linear registration algorithm
is applied, aligning the atlas with the target volume. The result of the
non-linear registration process is a deformation map that, when applied
to the target image, aligns the brain as a whole, including the cerebral
substructures. In Fig. 2, examples of these steps are presented. To acquire
the final hippocampus segmentation, the linear and non-linear defor-
mation maps are inverted and applied over the hippocampus segmen-
tation from the atlas, generating a segmentation of the hippocampus of
the target image.

For this experiment, two non-linear registration techniques were
tested: ART (Automatic Registration Tool) [45,46], and SyN (Symmetric
Diffeomorphic Image Registration) [47]. These techniques were
mentioned in a previous study [48] as the most precise with regard to
hippocampal region alignment. The SyN implementation used here is
provided by the author through the ANTs tool (http://stnava.github.io/
ANTs/) and ART was used through the tools available at the Neuro-
imaging Informatics Tools and Resources Clearinghouse (NITRC, https://
www.nitrc.org/projects/art).

http://adni.loni.usc.edu
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://stnava.github.io/ANTs/
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Fig. 1. Overview of the employed hippocampus segmentation method.

Table 1
Parameters used for atlas selection.

Parameter Utilized values

Gender Male (M), Female (F)
Age 70–75, 75–80, 80–85, 85–90 years
Clinical Situation Normal (N), Mild Cognitive Impairment (MCI), Alzheimer (AD)
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2.2. Atlases

For our application, an atlas is composed of two image volumes: a
structural MRI of the brain and a binary image containing a map of the
corresponding hippocampus. In total 25 atlases were used in the exper-
iment performed, of which 24 were chosen to represent a combination of
characteristics related to the three parameters: gender, age group, and
clinical situation (Table 1) and the last was the MNI152 atlas. This atlas is
provided by the Harvard Center for Morphometric Analysis, which has
the reference segmentation for the MNI152 model with 21 subcortical
structures, including the hippocampus.

The 24 atlases representing the characteristics defined by the three
parameters were selected from the ADNI database. The available data
include patients of various age groups, ethnicities, and genders. The
volumes available in the ADNI database include reference segmentations
for the hippocampus. This reference is generated by FreeSurfer and
Fig. 2. Examples of deformation maps
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validated by health professionals, providing a good ground truth image.
For each combination of characteristics among the three tested param-
eters, a representative individual was chosen from the database, for
example, one atlas for a male aged 70–75 years with MCI, another atlas
for a male aged 70–75 years with AD, and so on. The individual was
randomly selected from the available images and the data were checked
manually, taking into account the image integrity and the correctness of
hippocampus segmentation.

2.3. Test data

The image set used for testing is composed of 352 T1-weighted MRI
volumes selected from the ADNI database. Not all of the images available
on ADNI have reference segmentation for the hippocampus; therefore,
only a subset of the whole ADNI dataset was used. In addition, only one
volume per patient was used. Series of examinations of the patient's
disease evolution are common in this database; in these cases, only the
first acquisition of the set was used. From the image set resulting from
this selection, some images were randomly excluded in such a way that
the remaining data were distributed in an approximately uniform way
according to the three selection characteristics used: gender, age group,
and clinical situation. Table 2 shows the number of subjects within each
class.
generated on the registration step.
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2.4. Evaluation procedure

The evaluation of the influence of the atlas on segmentation accuracy
aims to measure how this accuracy is affected when an atlas with the
same characteristics as the individual being segmented (gender, age
group, clinical situation) is used.

Each image of the testing set was segmented with each atlas extracted
from the ADNI dataset and with the standard atlas MNI152 (see Section
2.2). Precision indexes obtained when using atlas selection by the meta-
information method are compared with the indexes obtained using the
standard MNI152 atlas and using the average index obtained using a
subset of the ADNI atlases.

This average index has the objective of evaluating the difference in
precision between using an atlas selected according to the patient's
characteristics – the selected atlas – or using a “randomly” selected atlas,
as though no selection by meta-information were made at all. For the
purpose of simplicity, from now on we will call this index the average
atlas index.

To get the average atlas index, we compute the average DSC from a
subgroup, as follows: In total, there are 24 parameter-specific atlases, one
for each combination of meta-information, as stated in Section 2.2. So,
we take a subgroup composed of the 23 remaining atlases, excluding the
one that exactly matches the target characteristics, and compute the DSC
from the average index obtained with each of them. For example, for the
input group F; 75–80; AD, the index is the average of all the other specific
atlases except the atlas F; 75–80; AD.

The experiment was run twice, employing SyN and ART registration
techniques, over the same dataset.
2.5. Execution

In total, 17,600 executions were performed, in which every image
from the 352 target images was segmented with each of the 25 atlases,
using two versions of the algorithm (ART and SyN). The testing execution
was parallelized in the High-Performance Laboratory of the Pontifical
Catholic University of Rio Grande do Sul (LAD/PUCRS). This procedure
was run on AMD Opteron 2.0-GHz CPUs and Intel Xeon 3.0-GHz bi-
processor CPUs.

3. Results

Fig. 3 shows the segmentation results of three different individuals.
This figure also presents slices of the T1 original image (upper image) and
of the image with the generated hippocampus mask (lower image)
resulting from the segmentation. In the segmented regions, the purple
pixels represent the regions of the hippocampus in which there was
agreement between the applied segmentation method and the segmen-
tation from the ADNI database, which corresponds to the correct
segmented region. The same image also displays pixels that only the
ADNI database considered to be part of the hippocampus (blue pixels)
and pixels that only the applied method considered to be part of (red
pixels). The measurement of precision quantification is given by the DSC
index, which represents the overlapping pixels in purple.

The best results were obtained by the method that uses the SyN
registration technique with the atlas selected by meta-information (DSC
Table 2
Number of individuals in each category.

70–75 75–80 80–85 85–90

F, AD 18 17 8 7
F, MCI 18 17 22 8
F, Normal 19 18 9 7
M, AD 17 12 14 7
M, MCI 16 18 22 19
M, Normal 20 18 14 7
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index: 0.68� 0.11). The use of ART instead of SyN decreases the seg-
mentation accuracy to 0.61� 0.10. The use of the MNI152 standard atlas
instead of the selected atlas decreased the DSC index to 0.62� 0.12. The
usage of the selected atlas also presented higher DSC values than the
average atlas index, 0.64� 0.11 in this case.2

The following sections present an analysis of the effects of selecting an
atlas based on meta-information (3.1), the precision of the segmentation
relative to age and the clinical situation (3.2), and the influence of each
meta-information parameter used individually in the atlas selection
(3.3). The results are evaluated statistically through paired t-tests, since
we are comparing the DSC values of the same subjects but through
different atlas-selection strategies. Since SyN performed better than ART
with all 25 atlases, all the analyses that follow were performed on the
results obtained using the SyN registration technique. All the resultant
indexes obtained with both registration techniques are presented in the
Supplementary Material.

3.1. Effects of atlas selection

The graphic in Fig. 4 presents the average of the precision indexes
obtained by using the proposed method and the other two segmentation
methodologies. For presentation purposes, the data are grouped initially
by clinical situation of the patient (normal, MCI, or AD), then by the age
group, and finally by gender (female or male). In 17 of the 24 groups,
there was an increase in the average precision of the segmentation using
the atlas selected according to the patient's condition. This happened
both when comparing the proposed method to the usage of the MNI152
standard atlas and when comparing to the method that used the average
atlas index.

The atlas selection is better for 21 groups when compared to the MNI
Atlas, and similar indexes are obtained for two groups (M; 85–90; N and
F; 85–90; A). The use of the MNI152 atlas was only better for one group
(F; 70–75; N). Compared to the average atlas index, the use of the
selected atlas has improved the precision index for 17 groups; for five of
those the indexes are similar and for two the indexes are lower.

The average DSC index for all categories shows that atlas selection
increased precision from 0.62� 0.12 to 0.68� 0.11 with MNI152 and
the selected atlases, respectively. A paired t-test showed that this increase
is statistically significant (p< 0.05; x¼ 0.62; μ0¼ 0.68; s¼ 0.11;
n¼ 352).

On comparing the general DSC obtained by the average index with
selected atlas, it can be seen that the DSC index increased from
0.64� 0.11 to 0.68� 0.11. Again, a paired t-test confirmed that the in-
crease in precision for the meta-information atlas is statistically signifi-
cant (p< 0.05; x¼ 0.64; μ0¼ 0.68; s¼ 0.11; n¼ 352).

3.2. Segmentation precision for age and progression of clinical situation

The graph in Fig. 5 shows the DSC precision based on the progression
of the clinical situation. Analyzing the right side of the graph, where the
MCI and AD patients are concentrated, it can be noticed that the use of
both a standard MNI152 atlas and the average atlas index results in a
clear precision loss, especially for patients with more advanced clinical
situations.

This precision loss can be observed more easily by applying a linear
regression to the indexes of each atlas. By observing the bars that
represent the precision of each method relative to the progress of the
characteristics used, it is noticeable that the precision level of the method
that implements the meta-information atlas selection is practically con-
stant, while in the other two methods, the precision level decreases
proportionally to the worsening of the patient's clinical condition.

This behavior can be explained by the fact that in advanced cases of
2 The DSC index obtained for each group of individuals, applying each tested
atlas, is presented in the Supplementary Material.



Fig. 3. Results of applying the proposed segmentation method. In red, the segmentation obtained with the applied method; in blue, the reference segmentation
obtained from the ADNI; in purple, the overlap of both segmentations. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)

Fig. 4. Graphic comparing the DSC precision indexes obtained through the use of different atlases. Error bars represent standard deviation.
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AD, the hippocampal atrophy is greater [49], leading to a greater dif-
ference from a normal hippocampus in terms of both size and shape,
which makes the registration process more complex. Hence, the usage of
selected atlases reduces this effect, since similar images demand less from
the registration technique.

Regarding the age of the individuals, a small degradation of the
precision indexes can be observed for older individuals when using the
average atlas (Fig. 6), but it is less pronounced than in the cases of the
clinical situation. This is not observed when using the atlas MNI152 even
94
though the indexes are generally lower for this atlas. In relation to the
clinical situation, it is perceivable that the loss of precision of theMNI152
atlas for unhealthy individuals is greater than that obtained when using
the average atlas. The MNI152 Harvard-Oxford atlas is more “distant”
from the tested individuals relating to the patient's age than the atlas
built from the average of the ADNI database atlases, since the MNI is built
from young healthy individuals, while the atlases used are built from
individuals with three different clinical situations (normal, MCI, and AD),
all in more advanced age groups.



Fig. 5. Evolution of the DSC index relative to the patient's clinical situation.

Fig. 6. Evolution of the DSC index relative to the patient's age.

3 Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD).
Public database provided by the Dementia Research Center of UCL (University
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3.3. Individual relevance of the selection parameters

The graphics in Fig. 7 compare the precision indexes obtained with
the exclusion of each parameter to the obtained index using the three
parameters together. The individuals are grouped by characteristics, the
same as in Fig. 4.

When suppressing age group as a selection parameter and using only
the clinical situation and gender, the average of the precision indexes fell
from 0.68� 0.11 to 0.66� 0.11. This difference is significant according
to a paired t-test (p< 0.05, x¼ 0.68; μ0¼ 0.66; s¼ 0.11; n¼ 1056). The
difference is more accentuated in the age group of 85–90 years. In this
case, the average DSC increased from 0.66� 0.11 to 0.71� 0.10 when
using age group for selection. This is an expected result, since in older
individuals the hippocampal atrophy increases [50], which makes the
registration process more complex, as mentioned in the previous section.

The clinical situation is also relevant for the atlas selection. Its
exclusion from the selection parameters, so that only age group and
gender were used, resulted in a decrease in precision from 0.68� 0.11 to
0.66� 0.11. The difference was shown to be significant through a paired
t-test (p< 0.05; x¼ 0.68; μ0¼ 0.66; s¼ 0.11; n¼ 1056). The central
graphic in Fig. 7 presents the difference between including and not
including this attribute as a criterion for the atlas selection.

Finally, suppressing gender as a selection parameter and using only
age group and clinical situation also creates a decrease in precision from
0.68� 0.11 to 0.66� 0.10 (p< 0.05; x¼ 0.68; μ0¼ 0.66; s¼ 0.10;
95
n¼ 1056). However, the difference is observed only in the female group
(DSC of 0.70� 0.10 to 0.67� 0.11), while in the male group there are no
differences in the general average (DSC of 0.66� 0.11 for both).

4. Discussion

This paper evaluates the influence of using patient meta-information
to better select an atlas in a hippocampus atlas-based segmentation
process. By using the ADNI database composed of 353 individual test
images, it was observed that an atlas selected by meta-information pro-
vides a significant increase in segmentation precision when compared to
other two procedures: using a standard atlas (MNI152) or a random atlas
created from a subgroup of the image set.

In this study, the method of selecting by meta-information achieved a
DSC average index of 0.68, in contrast with the indexes of 0.62 obtained
when using the standard MNI152 atlas and 0.64 when using an average
atlas from the image set. Since our work focuses not on the segmentation
method itself but on the selection technique that precedes it, it would not
be valid to directly compare these indexes with state-of-the-art methods
for hippocampus segmentation, like the one presented in Platero et al.
[51]. Platero et al. use a multiple-atlas technique using patch-based la-
beling and atlas-warping that is well known to be superior to single-atlas
techniques [52] such as the one applied here. However, despite the
segmentation technique employed, the analysis of improvement in ac-
curacy provided by the atlas-selection step remains valid.

Evaluating the relevance of the three parameters used in the atlas
selection, namely the individual's gender, age group, and clinical situa-
tion, we can conclude that each of these characteristics is relevant as an
atlas selection parameter. This occurs because the precision is negatively
affected when one of the parameters is not used in the atlas selection
process.

The index shows a significant increase, mainly in individuals with
MCI or AD. Typically, these are the situations in which the precision
indexes of segmentation methods tend to decay as the clinical situation
progresses to an AD state and for which the proposed method was able to
maintain a precision of 0.67. These scores are comparable to the index
obtained for healthy subjects. This method is limited in the sense that
atlas selection based on clinical situation cannot be used on occasions
when no clinical diagnosis is available. However, when evaluating the
disease progression through a series of MRI acquisitions, we can affirm
that it is better to use the most recent segmentation of the patient as an
atlas instead of using an average atlas.

For the evaluation of aging progression, the segmentation precision is
even higher for older individuals, as can be seen from the linear regres-
sion. On average, the DCS increases from 0.66 when using an average
atlas to 0.68 when using an atlas based on meta-information. Atlas
distinction based on age range was also employed in a recent study on
hippocampal subfield segmentation by Bender et al. [53]. Although the
issue of atlas selection was not evaluated specifically, good results were
obtained when segmenting using age-specific atlases for early lifespan
(6–26 years) and later lifespan (62–79 years).

Atlas selection using gender information provided an increase in ac-
curacy indexes for male individuals while keeping the precision stable for
female individuals. Although this confirms the observations made by
Ardekani et al. [54] when used the MIRIAD3 database, the existence of
structural sex differences in the hippocampus is a broad discussion in
many other fields. Recently, Tan et al. [55] showed that this difference is
not dimorphic but is only a difference in scale. This could explain the fact
that gender meta-information was observed here to have the lowest
relevance in atlas selection.

The non-linear registration algorithm also has a lot of influence on
College London).



Fig. 7. Graphic comparing the influence of the selection parameters used. Error bars represent the standard deviation.
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both segmentation precision and computational cost. In the implemented
method, the registration precision directly influences the final segmen-
tation precision, where an increase in the DSC index from 0.61 to 0.68
was observed when using the ART and SyN registration techniques,
respectively. However, SyN does present a higher computational cost
when compared to ART. This corroborates the conclusions exposed in the
paper by Klein et al. [48]. More than 90% of the computation time of the
implemented method is spent on the linear and non-linear registration
steps. Thus, improvements in registration techniques would benefit the
atlas-based segmentation methods in these processing steps.

A limitation of this study is that the “ground truth” of the hippo-
campus segmentation is based on segmentations performed on Free-
Surfer. The ground truth image segmentation is based on a non-
96
customized atlas. Even though all of the segmented hippocampi were
inspected visually, it is possible that there are errors in some images. To
our knowledge, ADNI is the largest freely available dataset with brain
images of elderly subjects in which visually inspected hippocampus
segmentations are included. Hence, it is currently the best dataset to be
used in development of studies such as this one.

5. Conclusion

It can be concluded that the usage of atlases specific to the clinical
situation, age, and gender is relevant since it improves the non-linear
registration of brain images without compromising the computational
cost. In general, the techniques used in the hippocampus segmentation
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process steps using multiple atlases, such as label-fusion, classifiers, and
optimizers, as well as the atlas selection, have reached a high level of
maturity. Hence, modern methods have now achieved satisfactory pre-
cision indexes [52]. Among all the techniques used in atlas-based seg-
mentation, the registration process is the one that burdens the method
most in terms of both computational cost and segmentation precision.
Therefore, future studies should continue to focus their research efforts in
these areas.
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